

Financial Disclosures

No financial disclosures

Optical Coherence Tomography-OCT

- Has changed the way the eye is examined &
- Has revolutionized the diagnosis & therapy of eye disease.
- Allows for earlier and more sensitive diagnosis.
- Allows for better understanding of disease mechanisms
- So how did we get here?

3

OCT timeline

- 1991 James Fujimoto at MIT Original research instrument 400 A-scans / second
- Current SD-OCT: around 27,000 to 50,000 A-scans /
- Current Swept Source-OCT up to 249,000 A-scans / sec. Commercial units about 100,000 per second
- OCT angiography
- First commercial OCT sold in 1996
- Now 8 commercial manufacturers of OCT's

OCT timeline

- Time Domain.....then.....
- Spectral Domain.....now....

5

· Swept Source and OCT dyeless angiography

Swept Source OCT

- Twice as fast (twice as many A-scans / second) as SD OCT
- Allows for wide field imaging (12mm vs. 6-9 mm). Easily gets ONH and macula in the same scan
- Longer wavelength of light, so can image much more effectively through media opacities, and penetrates much better into the choroid (2.6 mm depth vs. 2.3mm)

OCT

- in vivo histology
- Working mechanism: similar to B scan (optical vs. acoustic reflectivity) but uses infrared light
- •Resolution:3-5 microns with SD and SS technology
- Different optical reflectivity in various tissue structures: false color map. Often best to view in black and white for fine detail

7

۶

Image quality

- Poor signal strength equates to unreliable readings, only use 7 and above
- Images and reliability can be negatively impacted by media opacities, high myopia, patient movement, highly abnormal disc sizes, and segmentation errors (very important!)
- Beware "red disease"
- Average RNFL loss of about 1 micron / year

9

	Signal Quality			
		Cirrus OCT (Zeiss)	Signal Strength	≥ 6
		Spectralis (Heidelberg)	Quality Score	≥ 20
		RTVue (Optovue)	Signal Strength Index	≥ 30
	Tip – Low signal strength leads to artifactual thinning of RNFL			
10				

10

Importance of normative database

- Typically take demographic factors into account, but not refractive error. This can be very important with high myopes, who will have thinner NFL than their counterparts with equal demographics
- Composition of normative database also very important

Cirrus normative database for example

- 284 individuals
- Age 18 to 84
- Refractive error +8.00 to -12:00
- 43% Caucasian
- 24% Asian
- 18% African American
- 12% Hispanic
- 1% Indian
- Small amount of others combined

12

Diabetic Macular edema

27

RP WITH CME OCT

29

Vitreoretinal Interface Disorders

- Idiopathic Epiretinal Membrane
- Vitreomacular Traction Syndrome
- Idiopathic Macular Hole
- Full thickness Macular Hole

31

New grading system

- VMA with no change in foveal contour: Stage 0
- VMT with disruption of foveal contour: Stage 1
- VMT with small or medium FT hole: Stage 2
- VMT with medium or large full thickness hole: Stage 3
- Any full thickness hole without VMT: stage 4
- Lamellar hole
- Psuedohole from ERM

33

VAST study

- Not significantly associated with sex, refractive error, or visual acuity status
- AA 55% less than Caucasians

Macular hole sizes (full thickness)

- Small <= 250 microns
- Medium 250-400 microns
- Large 400-550 microns
- XL 550-800
- XXL 800-1000
- Giant over 1000
- "CLOSE" study
- · Horizontal diameter at narrowest point

VAST study : How common is VMA / VMT?

- 1950 eyes
- Age 40-89 years
- Phakic
- No pre-existing maculopathy
- No history of vitrectomy or Jetrea
- VMA prevalence of 39%
- VMT prevalence of 1%
- Most common in 40's and 50's, then decreases with age (25% VMA & 2% VMT over age 63)

34

ERM

- Membranous growth of glial cells on retina surface
- Can be asymptomatic or very bothersome
- Metamorphopsia is common
- More common after PVD
- Tractional macular holes, cysts, CME, neurosensory RD's; retinal and choroidal folds, etc.

35 36

47 48

CSR with PED

Pachychoroid pigment epitheliopathy

Choroidal-scleral junction

64

HD 100X line

Choriod-sclera
junction

CSR FAF

65 66

Dot shaped intraretinal lesions at the apex of drusen
 Often correspond to focal hyperpigmentation
 Start in the outer retina and migrate inward
 Likely represent pigment granules
 Ancillary AREDS II OCT study showed them to be associated with a 5X risk of geographic AMD in two years. No extra risk of CNV

Hyper-reflective foci

76

75

Nascent geographic atrophy

 Thinning of the OPL and INL with a hyporeflective wedge
 No photoreceptor or RPE loss
 Strongly associated with impending GA
 No extra risk of CNV

 Thinning of the OPL and INL with a hyporeflective wedge
 No photoreceptor or RPE loss

77 78

Sub-RPE hyper-reflective columns

- · Increased transmission of signal columns beneath the RPE (hyper-reflective)
- Overlying RPE appears intact
- May represent fine cracks in the RPE
- Opposite appearance of shadows cast by retinal blood vessels
- Extra risk of geographic disease and CNV

Drusen with subretinal fluid without evident CNV

- Subretinal fluid pockets around drusen
- Fluid does not extend higher than the peaks of the drusen
- No CNV on advanced testing (IVFA, ICG, OCTA)
- May be subclinical CNV or mechanical strain
- · Increased risk of CNV

80

82

79

Drusen substructures

- Non-homogeneous internal reflectivity of soft drusen
- All look the same on examination / photos, but have differing OCT reflectivity
- May precede drusen regression
- Increased risk of GA but not CNV

2019 ERM too 2016

81

Doyne's Honeycomb dystrophy

83

Doyne's OCT

84

Plaquenil toxicity OCT

93

95

Macula off RD

101 102

Choroidal

Folds

Solar maculopthy

| Solar maculopthy | Solar maculo

111

113 114

ORT's

CRT's

| Second Second

123 124

125 126

ONH Coloboma OCT

**Splinten sugge 16 line form

**Option of the color of the colo

Papilledema- IIH

131

129

132

ONH drusen detection with OCT

- Optic Disc Drusen Consortium Consensus.....
- Always use EDI
- Blood vessels are more solid, cast a shadow, and can show as figure 8
- Drusen always prelaminar
- Drusen always hyporeflective
- Drusen often have a hyperfrelective border, especially superiorly

139

ONH drusen detection with OCT

 Drusen can conglomerate, and these areas can have some internal reflectivity from borders

140

142

Peripapillary Hyper-reflective Ovoid Mass-like structures (PHOMS)

• "Fomms"

141

- Seen best with EDI
- Only seen with OCT, nothing else
- Circular innertube like structure around the disc above Bruch's membrane
- Herniated optic nerve fibers
- Seen in any condition that leads to nerve swelling or congestion
- ION, papilledema, disc drusen

High Definition Images: HD 6 Line Raster

OD ○ ● OS

Stan Pagic © Typining 12-time Conflict Com

Pagic Definition Images: HD 6 Line Raster

OD ○ ● OS

Stan Pagic © Typining 12-time Conflict Com

On the Pagic Definition Conflict Co

ONH drusen B-scan and FAF

143 144

High Distriction Insequent Alterior Segment 5 Lines 00 ♥ ○ 05 Retries

Submitted *** Submitted** Submitted** *** Submitted** Subm

Two for the price of one!

